McCain Stream Restoration Project Randolph County, North Carolina

EEP Project #443

MY-02 Monitoring Report - Final Data Collected: October 18, 2010 Submitted: November 15, 2010

Prepared for: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Parker Lincoln Building 2728 Capital Boulevard, Suite 1H-103 Raleigh, NC 27606

McCain Stream Restoration EEP Project #443 Sophia, North Carolina Randolph County

MY-02 Monitoring Report - Final Prepared By:

Ward Consulting Engineers, P.C. Firm License Number C-2619 Project Manager: Becky Ward, P.E. 8368 Six Forks Road, Suite 104 Raleigh, NC 27615-5083 Ph: 919-870-0526 Fax: 919-870-5359

TABLE OF CONTENTS

I.	Executive Summary	2
II.	Methodology	.3
A.	Vegetation Methodologies	3
B.	Stream Methodologies	3
III.	References	.4

APPENDICES

Appendix A. Project Vicinity Map and Background Tables	5
Figure 1a.Vicinity Map	6
Table 1a. Project Components	7
Table 1b. Component Summations	7
Table 2. Project Activity and Reporting History	8
Table 3. Project Contacts Table	9
Table 4. Project Attribute Table	10
Annendix B. Visual Assessment Data	11
Figure 2 Consolidated Current Conditions Plan View	12
Table 5 Visual Stream Morphology Assessment Table	16
Table 6 Vegetation Condition Assessment Table	20
Photos 1-6 Stream Station Photos	
Photos 7-13 Vegetation Monitoring Plots Photos	22
Thous 7-15. Vegetation Monitoring Thous Thoussen	
Appendix C. Vegetation Plot Data	29
Table 7. Vegetation Plot Criteria Attainment	30
Table 8. CVS Vegetation Plot Metadata	31
Table 9. CVS Planted and Total Stem Counts	32
Appendix D. Stream Survey Data	33
Figure 3. Cross-Section 1	34
Figure 4. Cross-Section 2	35
Figure 5. Cross-Section 3	36
Figure 6. Cross-Section 4	37
Figure 7. Cross-Section 5	38
Figure 8. Cross-Section 6	39
Figure 9. Longitudinal Profile	40
Figure 10. Pebble Count Plots – XS-1	41
Figure 11. Pebble Count Plots – XS-2	42
Figure 12. Pebble Count Plots – XS-3	43
Figure 13. Pebble Count Plots – XS-4	44
Figure 14. Pebble Count Plots – XS-5	45
Figure 15. Pebble Count Plots – XS-6	46
Table 10a. Baseline Stream Data Summary	47
Table 10b. Baseline Stream Data Summary	49
Table 11a. Dimensional Morphology Summary	50
Table 11b. Stream Reach Data Summary	51
Appendix E. Hydrologic Data	53
Table 12. Verification of Bankfull Events	54
Photo 14. Wrack Line	54

I. Executive Summary

The McCain Stream Restoration Site restored a total of 2,470 linear feet of stream in the Lower Yadkin River Basin. The project site is situated in Randolph County in the Piedmont physiographic province of North Carolina and is in the Carolina Slate Belt ecoregion. The project stream is an Unnamed Tributary to Back Creek (UTBC). From the confluence with UTBC, Back Creek flows approximately one mile to Lake Lucas / Back Creek Reservoir. The McCain Stream Restoration site is located on a 71-acre parcel located approximately one mile southeast of the intersection of Lake Lucas Road (SR 1518) and Spero Road (SR1504) in Randolph County, North Carolina. The property is an active livestock farm, and is surrounded by a mix of hardwood forests, row crops, and other livestock operations. See Figure 1 Vicinity Map in Appendix A.

Project Goals:

- Restore a stable channel morphology that is capable of moving the flows and sediment provided by its watershed.
- Restore riparian buffer habitat and functions.
- Improve water quality to the receiving watershed by reducing bank erosion and bed degradation.
- Improve aquatic habitat.

Project Objectives:

- Build an appropriate C4 channel with stable channel dimensions.
- Plant a functional Bottomland Hardwood Forest community to create an effective riparian buffer.
- Exclude livestock from the riparian areas.

Seven vegetation monitoring plots (1-7) were monitored for MY-02. Of these seven plots, plots 1 and 6 are not meeting vegetation success criteria, resulting in 72% of the plots meeting the vegetation success criteria. The success criterion for planted woody species is 320 stems/acre after MY-03. A mortality rate of ten percent will be allowed after MY-04 (288 stems/acre), with another ten percent allowed after MY-05 (260 stems/acre). Currently the vegetation criteria are being met with 456 planted stems/acre. Bare banks, and areas of low stem densities, and invasive exotics are the only notable vegetation problem areas for MY-02. Invasive exotics within the conservation easement include tall fescue (*Schedonurus arundinaceus*), Japanese stiltgrass (*Microstegium vimineum*), and Chinese privet (*Ligustrum sinense*). Although these species have been given different ranks of severity, the functionality of the project is not expected to be impaired significantly. It is likely that all of these species were present in and adjacent to the conservation easement previous to construction. The fescue appears to be inhibiting some growth of planted stems and there is very few successional woody stems were observed in the fescue dominated areas. For additional information relating to vegetation, see Appendix C.

There are not any significant changes in the stream pattern, profile or dimension between the baseline and the present monitoring year MY-02. Bedform features are present in a majority of

the stream length providing vertical stability throughout the project site. In general, all pools are maintaining their depth with most of the very deep pools forming on the downstream side of structures. In Reach 1, the upper 286 linear feet stream segment, 100% of riffles and pools are stable and functioning as designed. The riffle pebble count in this reach exhibits slight fining, which may be contributing to a lower gradient. Reach 1, with a total length of 286 linear feet, exhibits total bank erosion of 21% of the overall reach length. The total bank erosion length of 58 feet is a relatively small length of the total project length but a high percentage of the short reach length. The bank erosion will be monitored next year to see if the bank problem areas tabilize in the future as vegetation continues to establish. The two structures in Reach 1 are functioning properly and are showing no signs of piping or integrity issues. In Reach 2, 94% and 88% of riffles and pools are functioning properly, respectively. Thalweg centering appears to be an issue on about 24% of the upstream side of pools (Run). This is mostly due to aggradation, which appears in about 8% of the overall reach length. The structures in Reach 2 are showing a functionality of 100% throughout the reach and exhibit no signs of piping or integrity issues. The banks of Reach 2 appear to be stable with only about 1% of the reach overall length exhibiting signs of erosion. The area of Cross Section 2 has increased 15%, which reflects a shallow pool formation in the cross section location. The pebble count in Cross Section 2 is coarsening showing good riffle function. Cross Section 3, a pool has a well developed point bar that is decreasing the pool cross sectional area. The substrate throughout Reach 2 is consistent with appropriate riffle and pool function.

Summary information/data related to the occurrence of items such as beaver encroachment and statistics related to performance of various project and monitoring elements can be found in the supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly Restoration Plan) documents available on EEP's website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

II. Methodology

Methodologies follow EEP monitoring report template Version 1.3 (1/15/2010) and guidelines (Lee et al 2008). Photos were taken with a digital camera. A Trimble Geo XT handheld unit with sub-meter accuracy was used to collect vegetation monitoring plot origins, and problem area locations. Cross sectional and longitudinal surveys were conducted using total station survey equipment. Data was entered into AutoCAD Civil3D to obtain dimensions of the cross sections and parameters applicable to the longitudinal profile. Reports were then generated to display summaries of the stream survey.

A. Vegetation Methodologies

Level I of the EEP/CVS protocol Version 4.2 was used to collect data for the seven representative vegetation monitoring plots within the conservation easement for MY-02. Data collected for these plots are in Appendix C.

B. Stream Methodologies

Stream profile and cross-sections were surveyed using total station equipment and methods. The survey data was plotted using AutoCAD Civil3D. The longitudinal profile was generated using the MY-00 alignment. Cross sectional data was extracted based on a linear alignment between the end pins.

III. References

Lee, Michael T. Peet, Robert K. Roberts, Steven D., Wentworth, Thomas R. (2008). CVS-EEP Protocol for Recording Vegetation Version 4.2.

Weakley, Alan (2007). *Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas*. <u>http://www.herbarium.unc.edu/flora.htm</u>. Appendix A. Project Vicinity Map and Background Tables

Table 1a.	Project	Components
		1

Table 1a. Project Components McCain Stream Restoration-Project No. 443											
Project Compone nt or Reach ID	Existing Feet/Acres	Restorat ion Level	Approac h	Footag e or Acreag e	Stationin g	Mitigatio n Ratio	Mitigation Units	BMP Ele men ts ¹	Comment		
Reach I	490 lf	R	P2	286 lf	10+00 – 12+86	1	286		Stream was realigned and two cross vanes were installed		
Reach II	1955 lf	R	P2	2184 lf	12+87 – 34+70	1	2131		Stream was realigned and six cross vanes were installed. A 53' length of channel through an easement exception has been excluded from the mitigation unit calculation.		

1 = BR = Bioretention Cell; SF = Sand Filter; SW = Stormwater Wetland; WDP = Wet Detention Pond; DDP = Dry Detention Pond; FS = Filter Strip; S = Grassed Swale; LS = Level Spreader; NI = Natural Infiltration Area, O = Other, CF = Cattle Fencing; WS = Watering System; CH = Livestock Housing

Table 1b. Component Summations

Table 1b. Component Summations									
	McCain	Stream F	Restoration S	Site/Project N	lo. 443				
Restoration	Strea	Bir	narian	Non- Biparian	Unland	Buffor			
Level	(lf)	Wetla	and (Ac)	(Ac)	(Ac)	(Ac)	BMP		
		Riverine	Non- Riverine Riverine						
Restoration	2417	0	0	0	0				
Enhancement		0	0	0	0				
Enhancement I	0								
Enhancement II	0								
Creation		0	0	0	0				
Preservation	0	0	0	0	0				
HQ Preservation	0	0	0	0	0				
		0	0						
Totals (Feet/Acres)	2417	0		0	0	0	0		
MU Totals	2417		0	0	0	0	0		
	Non-Ap	olicable							

Table 2. Project Activity and Reporting History

Table 2. Project Activity and Reporting HistoryMcCain Stream Restoration Site/Project No. 443

Elapsed Time Since Grading Complete: 1 yr 10 months Elapsed Time Since Planting Complete: 1 yr 10 Months Number of Reporting Years¹: 2

Activity or Deliverable	Data Collection	Completion or
Bestoration Plan	2003/2004	Jun-05
Final Design – Construction Plans	N/A	May-06
Construction	N/A	Mar-09
Temporary seed mix applied to entire project area	N/A	Mar-09
Permanent seed mix applied to reach/segments 1-4	N/A	Mar-09
Mitigation Plan / As-built (Year 0 Monitoring – baseline)	May-09	Jul-09
Year 1 Monitoring	Oct-09	Dec-09
Year 2 Monitoring	Nov-10	Nov-10
Year 3 Monitoring		
Year 4 Monitoring		
Year 5 Monitoring		

1 = Equals the number of reports or data points produced <u>excluding</u> the baseline

Table 3. Project Contacts Table

Tab	le 3. Project Contacts Table
McCain Stre	am Restoration Site/Project No. 443
Designer	KCI Associates of NC
	Landmark Center II, Suite 220
	4601 Six Forks Rd.
	Raleigh, NC 27609
Primary project design POC	Adam Spiller (919) 783-9214
Construction Contractor	Carolina Environmental Contracting, Inc.
	PO Box 1905
	Mount Airy, NC 27030
Construction contractor POC	Stephen James (336) 320-3849
Survey Contractor	
Survey contractor POC	
Planting Contractor	Carolina Environmental Contracting, Inc.
	PO Box 1905
	Mount Airy, NC 27030
Planting contractor POC	Stephen James (336) 320-3849
Seeding Contractor	
Contractor point of contact	
Seed Mix Sources	Company and Contact Phone
Nursery Stock Suppliers	Virginia Department of Forestry
	(504) 363-5732
Monitoring Performers	Ward Consulting Engineers, P.C.
	8368 Six Forks Rd, Suite 104
	Raleigh, NC 27615
	Becky Ward (919) 870-0526
Stream Monitoring POC	Becky Ward (919) 870-0526
Vegetation Monitoring POC	Chris Sheats - The Catena Group - (919) 732-1300
Wetland Monitoring POC	Chris Sheats - The Catena Group - (919) 732-1300

Table 4. Project Attribute Table McCain Stream Restoration Site/Project No. 443							
Project County	Randolph County						
Physiographic Region	Piedmont						
Ecoregion	Carolina	a Slate Belt					
Project River Basin	Yadkin						
USGS HUC for Project (14 digit)	30401	03050050					
NCDWQ Sub-basin for Project	03	-07-09					
Within extent of EEP Watershed Plan?		No					
WRC Hab Class (Warm, Cool, Cold)	V	Varm					
% of project easement fenced or demarcated	1	00%					
Beaver activity observed during design phase?		No					
Restoration Con	nonent Attribute Table						
	Boach 1	Beach 2					
Drainage area							
Stream order	Firet	Firet					
Bestored length (feet)	286	2184					
Perennial or Intermittent	Perennial	Perennial					
Watershed type (Bural Urban Developing etc.)	Foronnia	Bural					
Watershed LULC Distribution (e.g.)	· · ·						
Urban		4%					
Ag-Row Crop		16%					
Ag-Livestock	12%						
Forested	67%						
Water/Wetlands	<1%						
Watershed impervious cover (%)	2%						
NCDWQ AU/Index number	13-2-3-3 (L	JT Back Creek)					
NCDWQ classification		С					
303d listed?		No					
Upstream of a 303d listed segment?		No					
Reasons for 303d listing or stressor		N/A					
Total acreage of easement	12.9	9 Acres					
Total vegetated acreage within the easement	4.8	Acres					
Total planted acreage as part of the restoration	7.6	Acres					
Rosgen classification of pre-existing	B4c	C5/E5/C4					
Rosgen classification of As-built	B4c	C4					
Valley type	V	V					
Valley slope	0.	.0066					
Valley side slope range (e.g. 2-3.%)	13.8%	6 - 32.6%					
Valley toe slope range (e.g. 2-3.%)	2.52%	6 - 6.15%					
	N/A	N/A					
I rout waters designation							
Dominant coil corice and characteristics							
Dominant Suil Series and Characteristics	Doque Sandy Loam	Doque Sandy Loam					
Denth							
Clav%							
K	U U	U U					
T	U	U					

Table 4. Project Attribute Table

Use N/A for items that may not apply. Use "-" for items that are unavailable and "U" for items that are unknown

Appendix B. Visual Assessment Data

5

6

7

733365.1

733124.5

1746622.0

1746641.1

1746625.4

1746656.9

733331.8

733095.5

733336.5

733080.5

1746657.3

1746628.0 733109.4

733368.9

1746654.4

	3110	BRUN	パーシャントントライ うちに アイノー	Ward Consulting Engineers, P.C. B368 Six Forks Rd, Suite 104 Raleigh, NC 27615-5083	Enhancement (919) 870-0526 FAX (919) 870-5359
Section Pin Coordinate	Table (NA Righ Northing 734750 7	D83) t Pin Easting 1746310.8	いため、シテレオシシングレクモ	Mccain Property (EEP #443) Consolidated current Conditions Plan View	IDOLPH COUNTY, NORTH CAROLINA
734473.61745659.4733888.11746462.6733744.3746493.0	734404.4 733915.0 733773.5	1746536.5 1746403.8 1746430.1	A STATE OF	DATE: 20 JULY	4 2010
733469.0 1746732.4 733326.2 1746726.5	733442.5 733291.0	1746673.0 1746668.6	P. C. P.		
APHIC SCALE			600	PROJECT NAME: McCAIN PROPI DWG NAME: CCPV SCALE:	ERTY
				1' = 150' SHEET NO.	
(IN FEET) l inch = 150 ft.				FIGURI	≣2

	Ward Consulting Engineers, P.C. 8368 Six Forks Rd, Suite 104 Raleigh, NC 27615-5083	Enhancement (919) 870-0526 FAX (919) 870-5359
	McCAIN PROPERTY (EEP #443) CURRENT CONDITIONS PLAN VIEW	RANDOLPH COUNTY, NORTH CAROLINA
	DATE: 20 JULY REVISIONS:	2010
APHIC SCALE	PROJECT NAME: McCAIN PROF DWG NAME: CCPV SCALE: 1' = 50' SHEET NO.	PERTY
(IN FEET $)inch = 50 ft.$	FIGUR	E 2A

Vegatation Plot Pin Coordinate Table (NAD83)									
Vegatation	Pii	n 1	Pi	Pin 2		Pin 3		n 4	
Plot Number	Northing	Easting	Northing	Easting	Northing	Easting	Northing	Easting	
1	734720.6	1746458.3	734703.2	1746430.5	734674.8	1746448.4	734691.7	1746476.	
2	734493.4	1746543.0	734476.2	1746571.3	734446.9	1746550.0	734465.4	1746523.3	
3	734162.7	1746572.3	734168.9	1746541.4	734136.8	1746534.4	734130.7	1746567.2	
4	733830.0	1746523.9	733863.9	1746517.8	733868.0	1746550.0	733835.2	1746556.2	
5	733565.2	1746579.5	733597.1	1746572.7	733602.5	1746606.0	733570.7	1746613.3	
6	733365.1	1746622.0	733331.8	1746625.4	733336.5	1746657.3	733368.9	1746654.4	
7	733124.5	1746641.1	733095.5	1746656.9	733080.5	1746628.0	733109.4	1746612.	
	Vegatation Plot Number 1 2 3 4 5 5 6 7	Vegatation Pin Plot Number Northing 1 734720.6 2 734493.4 3 734162.7 4 733830.0 5 733565.2 6 733365.1 7 733124.5	Vegatation Pin 1 Plot Number Northing Easting 1 734720.6 1746458.3 2 734493.4 1746543.0 3 734162.7 1746572.3 4 733830.0 1746523.9 5 733565.2 1746579.5 6 733365.1 1746622.0 7 733124.5 1746641.1	Vegatation Pin 1 Pi Plot Number Northing Easting Northing 1 734720.6 1746458.3 734703.2 2 734493.4 1746543.0 734476.2 3 734162.7 1746572.3 734168.9 4 733830.0 1746523.9 733863.9 5 733565.2 1746579.5 733597.1 6 733365.1 1746622.0 733331.8 7 733124.5 1746641.1 733095.5	Vegatation Pin 1 Pin 2 Plot Number Northing Easting Northing Easting 1 734720.6 1746458.3 734703.2 1746430.5 2 734493.4 1746543.0 734476.2 1746571.3 3 734162.7 1746572.3 734168.9 1746541.4 4 733830.0 1746523.9 733863.9 1746517.8 5 733565.2 1746579.5 733597.1 1746572.7 6 733365.1 1746622.0 733331.8 1746625.4 7 733124.5 1746641.1 733095.5 1746656.9	Vegatation Pin 1 Pin 2 Pin Plot Number Northing Easting Northing Easting Northing 1 734720.6 1746458.3 734703.2 1746430.5 734674.8 2 734493.4 1746543.0 734476.2 1746571.3 734446.9 3 734162.7 1746572.3 734168.9 1746541.4 734136.8 4 733830.0 1746523.9 733863.9 1746517.8 733868.0 5 733565.2 1746579.5 733597.1 174652.4 7333602.5 6 733365.1 1746622.0 733331.8 1746625.4 733336.5 7 733124.5 1746641.1 733095.5 1746656.9 733080.5	Vegatation Pin 1 Pin 2 Pin 3 Plot Number Northing Easting Northing Easting Northing Easting 1 734720.6 1746458.3 734703.2 1746430.5 734674.8 1746448.4 2 734493.4 1746543.0 734476.2 1746571.3 734446.9 1746550.0 3 734162.7 1746572.3 734168.9 1746541.4 734136.8 1746534.4 4 733830.0 1746523.9 733863.9 1746517.8 733868.0 1746550.0 5 733565.2 1746579.5 733597.1 1746572.7 733602.5 1746606.0 6 733365.1 1746622.0 733331.8 1746625.4 733336.5 1746657.3 7 733124.5 1746641.1 733095.5 1746656.9 733080.5 1746628.0	Vegatation Pin 1 Pin 2 Pin 3 Pin Plot Number Northing Easting Northing Easting Northing Easting Northing Easting Northing 1 734720.6 1746458.3 734703.2 1746430.5 734674.8 1746448.4 734691.7 2 734493.4 1746543.0 734476.2 1746571.3 734446.9 1746534.4 734130.7 3 734162.7 1746572.3 734168.9 1746517.8 733868.0 1746550.0 733835.2 5 733565.2 1746579.5 733597.1 1746572.7 733602.5 1746606.0 733570.7 6 733365.1 1746641.1 733095.5 1746656.9 733080.5 1746628.0 733109.4	

		1 Ald	My Hy St	Palaty	1 1.10	111-		We all	AN AN
Vegatation Plot Pin Coordinate Table (NAD83)									
	Vegatation	egatation Pin 1 Pin 2		Pin 3		Pin 4			
	Plot Number	Northing	Easting	Northing	Easting	Northing	Easting	Northing	Easting
	1	734720.6	1746458.3	734703.2	1746430.5	734674.8	1746448.4	734691.7	1746476.8
	2	734493.4	1746543.0	734476.2	1746571.3	734446.9	1746550.0	734465.4	1746523.3
	3	734162.7	1746572.3	734168.9	1746541.4	734136.8	1746534.4	734130.7	1746567.2
	4	733830.0	1746523.9	733863.9	1746517.8	733868.0	1746550.0	733835.2	1746556.2
	5	733565.2	1746579.5	733597.1	1746572.7	733602.5	1746606.0	733570.7	1746613.3
2	6	733365.1	1746622.0	733331.8	1746625.4	733336.5	1746657.3	733368.9	1746654.4
14	7	733124.5	1746641.1	733095.5	1746656.9	733080.5	1746628.0	733109.4	1746612.9
100		and the second of the second o	A STATE OF THE OWNER OF THE OWNER OF	C		and the second se	The same state of the same		

/P-

	Cross S	Section
17	Cross Section	
	Number	Northin
	1	734735
	2	734473
	3	733888
12	4	733744
	5	733469
	6	733326
	al and the	0.00

/PA-S

4-10

PROBLEM AREA-MINOR PROBLEM AREA-MEDIUM

VEG PLOT PHOTO POINT VEG PROBLEM AREA STREAM CROSSING

PROBLEM AREA-MAJOR PROBLEM AREA LOCATION CROSS SECTION PROPOSED THALWEG EASEMENT

CS-6

PP-10

<u>LEGEND</u>

PA-1

•

/P-2

VPA-2

2007 Aerial Photo from Randolph County, NC GIS

P-8b)

CS-5

286

Reach ID Assessed Length

Table 5

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			1	10	97%			
		2. <u>Degradation</u> - Evidence of downcutting					100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	2	2			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	3	3			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	3	3			100%			
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	3	3			100%			
		2. Thalweg centering at downstream of meander (Glide)	2	2			100%			
	-	-	-	-			-	-		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			2	120	79%			79%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.					100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse					100%			100%
	_		-	Totals	2	120	79%	0	0	79%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	2	2			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	2	2			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio <u>></u> 1.6 Rootwads/logs providing some cover at base-flow.	2	2			100%			

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			7	170	92%			
		2. <u>Degradation</u> - Evidence of downcutting					100%			
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	16	17			94%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	16	17			94%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	15	17			88%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	13	17			76%			
		2. Thalweg centering at downstream of meander (Glide)	16	18			89%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			4	65	99%			99%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.					100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse					100%			100%
				Totals	4	65	99%	0	0	99%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	6	6			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	6	6			100%			

Criteria, Definitions and Thresholds for Visual Stream Morphology Assessments

Major	o				
Channel	Channel Sub- Category	Metric	Definitions	Cataloging Threshold	CCPV Depiction
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 	Aggradation refers to at least moderate increases in reach stored sediment. It is NOT simply constituted by minor fining of rifles or filling of pools at or below baseflow elevations. An aggrading reach is often characterized by sand or gravel bar formation/growth with associated fining of reach substrate and smoothing of the reach hong profile. Barsiaggraded areas significant enough to deflect flow against banks should be catalogued. Repeat channel photopoints are a key tool in assessing project aggradation. (See photo exhibit 1 below for range of example bar development/aggradation)	Catalog only if feature has most of the characteristics described to the left (cell E11) and is at least 15 feet in length or 20% of the rittlerrun length, whichever is less.	NA
		 <u>Degradation</u> - Number and size of evident downcuts within Riffle/Run units. 	Where projects have regularly-paped engineered grade control, degredation/downcuting is expected only in short, descrete length, - Indicators include periods relial reliances, channel bed'stage' in class, rich partent material, evidence of bed referred at the bank too (parent material may be exposed); mobilization of coarse rifle subtrate in to pool downstream, and perhaps rifles with run morphology. Long rollie surveys should support an assessment of bed degredation where the visual assessment and survey overlap.	Catalog only if feature has most of the characteristics described to the left (cell E12) and is at least 15 feet in length or 20% of the riffle/run length, whichever is less.	Dark Red or Purple Color to be certain to distinguish from Mass Wasting Color Code
	2. Riffle Condition	1. Texture	Riffles should maintain a coarseness similar to the design distribution. Significant lining of the riffle surface indicates non attainment for the riffle. Repeat pebble counts should support an assessment of riffle lining where overlap occurs (see exhibit graphic 2 below describing embedding for gravel-cobble systems).	NA	NA
	3. Meander Pool Condition	1. Depth Sufficient?	This metric is used to assess meander poole and also step-pools along a Rosgen B-type channel reaches. For stepped reaches the pools will be evaluated and tallied here and undorth the Habital Sub-Category below. The max pool bankfull depth should be 1.6 times the mean bankfull depth (Max Pool Depth: Nean Bankfull Depth >16). The mean bankfull depth from the As-built/baseline survey can be utilized to make this determination. Exhibit 3 provides residual pool depths using the 1.6 multiplier for a range of mean channel riffle depths that typity restoration projects.	NA	NA
		2. Length_appropriate?	This metric will only be applied to meander pools. The meander pool length should be >30% of the - linear centerline distance between the tail of the upstream riffle and the head of the downstream riffle.	NA	NA
	4.Thalweg Position	 Thalweg centering at upstream of meander bend (Run)? 	This metric is used to characterize flow paths along riffle-run-pool transitions. The thatweg is expected to be against the outer bank in the bend aper, but vectors oriented towards the outer bank too far above the bend apex may indicate the potential for increased bank reason. Similarly, the pool-glider-riffle transition is also expected to demonstrate (how path centering (Metric 4.2 below). The current-year thatweg rendered on the CCPV figure can assist in this assessment.	NA	NA
		2. Thalweg centering at downstream of meander bend (Glide)?	See Metric 4.1 above	NA	NA
	•				
2. Bank	1. Scoured/Eroding Bank	In order to better assess continued bank erosion risk, tallied bank segments are also characterized with respect to th	Banks with evident scour /erosion	Bank Minimum Height Length >6 6 3.6 8	Yellow.
	2. Undercut	proximity and integrated extent of stabilizing vegetation. Continued erosion risk for a given bank instability object essentially adjued downwards by adjacent mature vegetation and/or stabilizing rost. Once m orre mature trees in close proximity (e.g. 10 feet or less) or obvious integration of rost mass within the bank failure are characteristics that woul prompt the taliying of a given bank object into the additional sub-category related to risk of further instability (co <u>utinns 4</u>) of the actual clata table. Essentially, the voestative elements of rootine density and deth (e.g. (rom a BEH) assessment and the stability of the source of the stability of the second stability of the source	Banks undercut/overhanging to the extent that mass wasting appears likely? Does NOT include undercuts that modest, appear sustainable/stable and are providing habitat.	<3 10 This table provides a guide for working thresholds for bank erosion cataloging/mapping based on bank height. For the bank height ranget of	Orange.
	3. Mass Wasting	need to be considered here.	Bank slumping/calving/collapse?	bank to be mapped and tallied is specified. For example, where banks are <3 feet high, only map an unstable segment if it is \geq 10 feet. ⁵	Red.
	A Querral I late malter	The according to the second structure and second solution all structures that are in the second se	Dulls of structure should all clatest with an effet also discublers as lance 0.		
3. Structures	1. Overall Integrity	The assessment of engineered structure performance should include all structures that provide grade control, bank protection, or habitat functions. These include Vanes, J-hooks, and rootwads, etc.	Bulk of structure physically intact with no dislodged boulders or logs?		Using callouts or some other means to maintain legibility, annotate structure with red "S" if structural failure has occurred
	2. Grade Control		Bed grade control maintained across the sill structure? No evident loss of bed elevation immediately upstream of structure? Some piping alone will not constitute a loss of grade control.		Using callouts or some other means to maintain legibility, annotate structure with red "G" if structure has lost grade control
	2a. Piping		Catalog structures lacking any substantial flow underneath sills or around arms?		Using callouts or some other means to maintain legibility, annotate structure with red "P" if significant piping has occurred
	3. Bank Protection		See exhibit 4 below for determining structural sphere of influence. If the amount of bank that is deemed to be actively ending within the structures sphere of influence exceeds 15% of the total bank totage within the structures sphere of influence, then the structure should be classified as <u>not</u> providing adequate bank protection in the data table.		Using callouts or some other means to maintain legibility, annotate structure with red "B" if structure has failed to provide bank protection
	4. Habitat		Are pools maintained @ ~ Max Pool Depth : Mean Bankfull Depth > 1.6? For rootwads, habitat provision means interacting with baseflow and providing cover.		Using callouts or some other means to maintain legibility, annotate structure with red "H" if structure is not providing habitat

Exhibit 1. Examples of bar features warranting concerning related to cataloging item 1.1.1 of the assessment

Exhibit 2. Graphic depicting embedding of riffles with fine material

Progressing from top to bottom, the series of graphics to the left depicts the fining of interstial spaces between coarser particles. This describes increasing levels of embededness in riffles. The observer must have an understanding of the intended substrate distributions/texture of the bed for the projects riffles when assessing this. However, as a guideline for streams in the coarse gravel to cobble range, the 2nd panel from the top represents a visual guideline for the condition that would begin to elicit concern for this parameter, but still contains a good deal of coarse material. Progressing from that state to the conditions depicted in the the 3rd and 4th panel represents a visual que for significant emdedding.

From USEPA (EPA 841-B-97-003 - Nov 1997)

Exhibit 3. Residual Pool Depth Table - Relating 1.6 criterion for typical mean riffle depths to residual pool depths

This residual pool table was provided in the event the tracking of bankfull at each pool feature to estimate a Dmax was inconvenient. Estimating the residual pool depth by measuring the max pool depth to water surface and subtracting the water depth at the riffle head may provide a more convenient way under certain circumstances to estimate in the field. For this reason the exhibit table provides a relationship between the 1.6 criterion applied to mean riffle depth for the site and the resulting residual pool depths.

5 = The above was developed because of the need to have a threshold given the large number of performers and to avoid spending time trying to catalog and map small objects that if excluded would have minimal overall impacts on the performance percentages. It is a guide that tries to strike a balance between the obvious need to have a threshold, yet provide confidence that the site conditions are accurately represented. For example, a scenario where 1 object nearly exceeding the threshold were to occur every 100 feet of bank height (which would be a high frequency and unlikely) with a bank height of 5 feet, would vield an error of ~3%. However, if the observer is encountering a truly high number of objects just below the threshold in the above table (e.g. > 1 per 100 feet of bank channel on average) and is concerned that the exclsuion of such objects is going to misrepresent the site conditions, then judgement should be applied and objects below the threshold may be cataloged. If a rare condition as described does occur and the thresholds are not utilized then a table footnote explaining this should be included.

Lastly, given the increase in overall area and the implications to stability, greater banks heights required smaller threshold minimums.

Table 6

Diantod Acroado¹

Vegetation Condition Assessment

- --

	i laittea Aviolage	1.90					
	Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
	1. Bare Areas	Very limited cover of planted woody and herbaceous material.	0.1 acres	Brown Hatch	3	0.01	0.1%
	2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	Brown Hatch	8	1.34	16.8%
ĺ				Total	11	1.35	16.9%
ĺ	3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	N/A	0	0.00	0.0%
ĺ			Cu	mulative Total	11	1.35	16.9%

Easement Acreage ²	13.34 acres					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	1000 SF	Brown Hatch	9	1.34	16.8%
5. Easement Encroachment Areas ³	Areas or points (if too small to render as polygons at map scale).	none	Brown Hatch	9	1.34	16.8%

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1, 2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by EEP such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the potential history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and there frames discussed and there frames discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particularly early in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly early in a projects monitoring history. However, areas of discreet, dense patches will dense, d

High Concern:				Low/Moderate Concern:	
Vines	Genus/Species	Shrubs/Herbs	Genus/Species	Shrubs/Herbs	Genus/Species
Kudzu	Pueraria lobata	Japanese Knotweed	Polygonum cuspidatum	Japanese Privet	Ligustrum Japonicum
Porcelain Berry	Ampelopsis brevipeduncu	Oriental Bittersweet	Celastrus orbiculatus	Glossy Privet	Ligustrum lucidum
Japanese Honeysuckle	Lonicera japonica	Multiflora Rose	Rosa multiflora	Fescue	Festuca spp.
Japanese Hops	Humulus japonicus	Russian olive	Elaeagnus angustifolia	English Ivy	Hedera helix
Wisterias	Wisteria spp.	Chinese Privet	Ligustrum sinense	Microstegium	Microstegium vimineum
Winter Creeper	Euonymus fortunei	Chinese Silvergrass	Miscanthus sinensis	Burning Bush	Euonymus alatus
Bush Killer (Watch List)	Cayratia japonica	Phragmites	Phragmites australis	Johnson Grass	Sorghum halepense
		Bamboos	Phyllostachys spp	Bush Honeysuckles	Lonicera, spp.
Trees		Sericea Lespedeza	Sericea Lespedeza	Periwinkles	Vinca minor
Tree of Heaven	Ailanthus altissima	Garlic Mustard (Watch List)	Alliaria petiolata	Morning Glories	Morning Glories
Mimosa	Albizia julibrissin	Cogon Grass (Watch List)	Imperata cylindrica	Bicolor Lespedeza (Watch List)	Lespedeza bicolor
Princess Tree	Paulownia tomentosa	Giant Reed (Watch List)	Arundo donax	Chinese Yams (Watch List)	Dioscorea oppositifolia
China Berry	Melia azedarach	Tropical Soda Apple (Watch List)	Solanum viarum	Air Potato (Watch List)	Dioscorea bulbifera
Callery Pear	Pyrus calleryana	Japanese Spirea (Watch List)	Spiraea japonica	Japanese Climbing Fern (Watch List)	Lygodium japonicum
White Mulberry	Morus alba	Japanese Barberry (Watch List)	Berberis thunbergii		
Tallow Tree (Watch List)	Triadica sebifera				

Stream Station Photos

Photo 1. Looking downstream at XS-1

McCain Stream Restoration NCEEP Project number: 443 Ward Consulting Engineers, P.C.

X3-3 TOT 18 12 DI DI TA PIV

Photo 3. Looking downstream at XS-3

Photo 4. Looking downstream at XS-4

McCain Stream Restoration NCEEP Project number: 443 Ward Consulting Engineers, P.C.

Photo 5. Looking downstream at XS-5

Photo 6. Looking downstream at XS-6

McCain Stream Restoration NCEEP Project number: 443 Ward Consulting Engineers, P.C.

Vegetation Monitoring Plots Photos

Photo 7. Vegetation Plot 1

Photo 8. Vegetation Plot 2

McCain Stream Restoration NCEEP Project number: 443 Ward Consulting Engineers, P.C.

Photo 9. Vegetation Plot 3

Photo 10. Vegetation Plot 4

McCain Stream Restoration NCEEP Project number: 443 Ward Consulting Engineers, P.C.

Photo 11. Vegetation Plot 5

Photo 12. Vegetation Plot 6

McCain Stream Restoration NCEEP Project number: 443 Ward Consulting Engineers, P.C.

Photo 13. Vegetation Plot 7

Appendix C. Vegetation Plot Data

	Table 7. Vegetation Plot Criteria Attainment								
Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean							
VP 1	No								
VP 2	Yes								
VP 3	Yes								
VP 4	Yes	72%							
VP 5	Yes								
VP 6	No								
VP 7	Yes								

Table 8. CVS Vegetat McCain Stream Bestoratio	tion Plot Metadata
Report Prepared By	The Catena Group
database name	McCain Property.mdb
DESCRIPTION OF WORKSHEETS IN THIS DOCUM	ENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	443
project Name	McCain
Description	Stream restoration site located in the Yadkin River Basin
River Basin	
length(ft)	2450
stream-to-edge width (ft)	50
area (sq m)	22758.94
Required Plots (calculated)	7
Sampled Plots	7

EEP Project Code 443. Project Name: McCain

Table 9: Planted and Tota	l Stem Counts										Cur	rent P	lot Data	(MY2 2	2010)										A	nnua	Means	5	
			E4	143-A-0	0001	E4	143-A-0	002	E	443-A-0	003	E	443-A-0	004	E	443-A-00	05	E4	143-A-0	006	E4	143-A-0	007	N	Y2 (2010))	N	IY1 (2009)
Scientific Name	Common Name	Species Type	P-LS	P-all	Т	P-LS	P-all	т	P-LS	P-all	т	P-LS	P-all	Т	P-LS	P-all	т	P-LS	P-all	т	P-LS	P-all	Т	P-LS	P-all 1	Г	P-LS	P-all 7	ī
Betula nigra	river birch	Tree			2 2		1	1		6	6		Э	3 3		1	1		4	4		1	1	L	18	18		19	19
Cornus amomum	silky dogwood	Shrub				8	8 8	8		1	1					3 3	3		1	1	4	1 5	5	5 15	18	18	15	20	20
Fraxinus pennsylvanica	green ash	Tree					2	2		1	1		1	1 1	-										4	4		4	4
Liriodendron tulipifera	tuliptree	Tree								3	3		1	L 1								1	. 1	L	5	5		6	6
Platanus occidentalis	American sycamore	Tree					1	1		5	5					1	1		1	1		1	. 1	L	9	9		9	9
Quercus falcata	southern red oak	Tree								1	1		2	2 2											3	3		3	3
Quercus pagoda	cherrybark oak	Tree								1	1														1	1		1	1
Quercus phellos	willow oak	Tree			4 4								1	L 1		1	1								6	6		7	7
Salix nigra	black willow	Tree				e	6 6	6								1 1	1							7	7	7	9	9	9
Salix sericea	silky willow	Shrub Tree				1	. 1	1							4	1 4	4				3	3 3	3 3	8 8	8	8	8	8	8
		Stem count	()	6 6	15	5 19	19	(0 18	18	. (0 8	8 8	:	3 11	11	() 6	6	7	7 11	. 11	L 30	79	79	32	86	86
		size (ares)		1			1			1			1			1			1			1			7			7	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.17			0.17	
		Species count	()	2 2	3	6	6	() 7	7	(0 5	5 5		3 6	6	() 3	3	2	2 5	5 5	5 3	10	10	3	10	10
		Stems per ACRE	(242.	8 242.8	607	768.9	768.9	(728.4	728.4	. (0 323.7	323.7	323.	7 445.2	445.2	(242.8	242.8	283.3	3 445.2	445.2	173.4	456.7	456.7	185	497.2	497.2

Appendix D. Stream Survey Data

McCain Property MY-02 Longitudinal Profile Main Channel: Station 10+00-35+50

			PEBBLE C	OUNT				
Project:	McCain Prope	erty				Date:	9/10/2010	
Location:	Cross Section	#1						
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	3		3	3%	3%
	Very Fine	.062125	S	11		11	10%	13%
	Fine	.12525	A	12		12	11%	24%
	Medium	.2550	N	20		20	19%	43%
	Coarse	.50 - 1.0	D	4		4	4%	46%
.0408	Very Coarse	1.0 - 2.0	S	1		1	1%	47%
.0816	Very Fine	2.0 - 4.0		1		1	1%	48%
.1622	Fine	4.0 - 5.7	G	1		1	1%	49%
.2231	Fine	5.7 - 8.0	R	0		0	0%	49%
.3144	Medium	8.0 - 11.3	A	0		0	0%	49%
.4463	Medium	11.3 - 16.0	V	2		2	2%	51%
.6389	Coarse	16.0 - 22.6	:::::E:::::	2		2	2%	53%
.89 - 1.26	Coarse	22.6 - 32.0	L.	3		3	3%	56%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	2		2	2%	57%
1.77 - 2.5	Very Coarse	45.0 - 64.0		13		13	12%	69%
2.5 - 3.5	Small	64 - 90	C	10		10	9%	79%
3.5 - 5.0	Small	90 - 128	O	16		16	15%	94%
5.0 - 7.1	Large	128 - 180	::::B:::::	5		5	5%	98%
7.1 - 10.1	Large	180 - 256	Ļ	0		0	0%	98%
10.1 - 14.3	Small	256 - 362	В	1		1	1%	99%
14.3 - 20	Small	362 - 512	L	0		0	0%	99%
20 - 40	Medium	512 - 1024	D	0		0	0%	99%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0		0	0%	99%
	Bedrock		BDRK	1		1	1%	100%
			Totals	108	0	108	100%	100%

d16	d35	d50	d84	d95
0.2	0.4	13.5	103.6	144.6

			PEBBLE C	OUNT				
Project:	McCain Prope	rty				Date:	9/10/2010	
Location:	Cross Section	#2						
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	1	0	1	1%	1%
	Very Fine	.062125	S	2	0	2	2%	3%
	Fine	.12525	Α	2	0	2	2%	5%
	Medium	.2550	N	4	0	4	4%	9%
	Coarse	.50 - 1.0	D	0	0	0	0%	9%
.0408	Very Coarse	1.0 - 2.0	S	15	0	15	15%	24%
.0816	Very Fine	2.0 - 4.0		0	0	0	0%	24%
.1622	Fine	4.0 - 5.7	G	2	0	2	2%	25%
.2231	Fine	5.7 - 8.0	R	3	0	3	3%	28%
.3144	Medium	8.0 - 11.3	A	3	0	3	3%	31%
.4463	Medium	11.3 - 16.0	V	5	0	5	5%	36%
.6389	Coarse	16.0 - 22.6	: : : : :E : : : :	12	0	12	12%	48%
.89 - 1.26	Coarse	22.6 - 32.0	L	9	0	9	9%	57%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	5	0	5	5%	62%
1.77 - 2.5	Very Coarse	45.0 - 64.0		9	0	9	9%	71%
2.5 - 3.5	Small	64 - 90	C	10	0	10	10%	80%
3.5 - 5.0	Small	90 - 128	O	9	0	9	9%	89%
5.0 - 7.1	Large	128 - 180	В	5	0	5	5%	94%
7.1 - 10.1	Large	180 - 256	:::::L:::::	4	0	4	4%	98%
10.1 - 14.3	Small	256 - 362	В	1	0	1	1%	99%
14.3 - 20	Small	362 - 512	L	0	0	0	0%	99%
20 - 40	Medium	512 - 1024	:D	0	0	0	0%	99%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	99%
	Bedrock		BDRK	1	0	1	1%	100%
			Totals	102	0	102	100%	100%

d16	d35	d50	d84	d95
1.5	14.7	24.2	105.5	197.1

	PEBBLE COUNT Project: McCain Property Date: 9/10/2010													
Project:	McCain Prope	rty				Date:	9/10/2010							
Location:	Cross Section	#3												
				Particle	Counts									
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative						
	Silt/Clay	< 0.062	S/C		9	9	9%	9%						
	Very Fine	.062125	S		2	2	2%	11%						
	Fine	.12525	A		0	0	0%	11%						
	Medium	.2550	N		0	0	0%	11%						
	Coarse	.50 - 1.0	D		0	0	0%	11%						
.0408	Very Coarse	1.0 - 2.0	S		6	6	6%	17%						
.0816	Very Fine	2.0 - 4.0			0	0	0%	17%						
.1622	Fine	4.0 - 5.7	G		0	0	0%	17%						
.2231	Fine	5.7 - 8.0	R		5	5	5%	22%						
.3144	Medium	8.0 - 11.3	A		5	5	5%	26%						
.4463	Medium	11.3 - 16.0	V		6	6	6%	32%						
.6389	Coarse	16.0 - 22.6	E		9	9	9%	41%						
.89 - 1.26	Coarse	22.6 - 32.0	L		10	10	10%	51%						
1.26 - 1.77	Very Coarse	32.0 - 45.0	S		9	9	9%	60%						
1.77 - 2.5	Very Coarse	45.0 - 64.0			10	10	10%	70%						
2.5 - 3.5	Small	64 - 90	:::::C:::::		7	7	7%	76%						
3.5 - 5.0	Small	90 - 128	O		5	5	5%	81%						
5.0 - 7.1	Large	128 - 180	::::B:::::		0	0	0%	81%						
7.1 - 10.1	Large	180 - 256	Ŀ		0	0	0%	81%						
10.1 - 14.3	Small	256 - 362	В		0	0	0%	81%						
14.3 - 20	Small	362 - 512	<u>L</u>		0	0	0%	81%						
20 - 40	Medium	512 - 1024	:D		0	0	0%	81%						
40 - 80	Lrg- Very Lrg	1024 - 2048	R		0	0	0%	81%						
	Bedrock		BDRK		19	19	19%	100%						
			Totals	0	102	102	100%	100%						

d16	d35	d50	d84	d95
1.9	17.8	31.0	0.0	0.0

	PEBBLE COUNT Project: McCain Property Project: 9/10/2010													
Project:	McCain Prope	rty				Date:	9/10/2010							
Location:	Cross Section	#4												
	-			Particle	Counts									
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative						
	Silt/Clay	< 0.062	S/C	1		1	1%	1%						
	Very Fine	.062125	S	2		2	2%	3%						
	Fine	.12525	A	2		2	2%	4%						
	Medium	.2550	· · · · N	1		1	1%	5%						
	Coarse	.50 - 1.0	D	0		0	0%	5%						
.0408	Very Coarse	1.0 - 2.0	S	4		4	4%	9%						
.0816	Very Fine	2.0 - 4.0		5		5	4%	13%						
.1622	Fine	4.0 - 5.7	G	5		5	4%	18%						
.2231	Fine	5.7 - 8.0	R	4		4	4%	21%						
.3144	Medium	8.0 - 11.3	A	4		4	4%	25%						
.4463	Medium	11.3 - 16.0	V	6		6	5%	30%						
.6389	Coarse	16.0 - 22.6	::::E::::	20		20	18%	47%						
.89 - 1.26	Coarse	22.6 - 32.0	Ŀ	15		15	13%	61%						
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	13		13	11%	72%						
1.77 - 2.5	Very Coarse	45.0 - 64.0		7		7	6%	78%						
2.5 - 3.5	Small	64 - 90	C	9		9	8%	86%						
3.5 - 5.0	Small	90 - 128	0	5		5	4%	90%						
5.0 - 7.1	Large	128 - 180	::::B::::	3		3	3%	93%						
7.1 - 10.1	Large	180 - 256	:::::L:::::	0		0	0%	93%						
10.1 - 14.3	Small	256 - 362	В	0		0	0%	93%						
14.3 - 20	Small	362 - 512	L.	0		0	0%	93%						
20 - 40	Medium	512 - 1024	D	0		0	0%	93%						
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0		0	0%	93%						
	Bedrock		BDRK	8		8	7%	100%						
			Totals	114	0	114	100%	100%						

d16	d35	d50	d84	d95
5.3	17.8	24.0	83.5	0.0

	PEBBLE COUNT Project: McCain Property Project: McCain Property Project: McCain Property Project: 9/10/2010													
Project:	McCain Prope	rty				Date:	9/10/2010							
Location:	Cross Section	#5												
	-			Particle	Counts									
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative						
	Silt/Clay	< 0.062	S/C		3	3	3%	3%						
	Very Fine	.062125	S		8	8	7%	10%						
	Fine	.12525	A		9	9	8%	18%						
	Medium	.2550	Ν		3	3	3%	21%						
	Coarse	.50 - 1.0	D		5	5	4%	25%						
.0408	Very Coarse	1.0 - 2.0	S		12	12	11%	36%						
.0816	Very Fine	2.0 - 4.0			3	3	3%	38%						
.1622	Fine	4.0 - 5.7	G		3	3	3%	41%						
.2231	Fine	5.7 - 8.0	R		5	5	4%	46%						
.3144	Medium	8.0 - 11.3	A		12	12	11%	56%						
.4463	Medium	11.3 - 16.0	V		12	12	11%	67%						
.6389	Coarse	16.0 - 22.6	E		12	12	11%	78%						
.89 - 1.26	Coarse	22.6 - 32.0	L		6	6	5%	83%						
1.26 - 1.77	Very Coarse	32.0 - 45.0	S		4	4	4%	87%						
1.77 - 2.5	Very Coarse	45.0 - 64.0			9	9	8%	95%						
2.5 - 3.5	Small	64 - 90	C		4	4	4%	98%						
3.5 - 5.0	Small	90 - 128	O		1	1	1%	99%						
5.0 - 7.1	Large	128 - 180	::::B:::::		0	0	0%	99%						
7.1 - 10.1	Large	180 - 256	Ŀ		0	0	0%	99%						
10.1 - 14.3	Small	256 - 362	B		0	0	0%	99%						
14.3 - 20	Small	362 - 512	L		0	0	0%	99%						
20 - 40	Medium	512 - 1024	:::::D:::::		0	0	0%	99%						
40 - 80	Lrg- Very Lrg	1024 - 2048	R		0	0	0%	99%						
	Bedrock		BDRK		1	1	1%	100%						
			Totals	0	112	112	100%	100%						

d16	d35	d50	d84	d95
0.2	1.9	9.3	35.5	66.6

	PEBBLE COUNT Project: McCain Property Date: 9/10/2010													
Project:	McCain Prope	rty				Date:	9/10/2010							
Location:	Cross Section	#6												
				Particle	Counts									
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative						
	Silt/Clay	< 0.062	S/C	4		4	4%	4%						
	Very Fine	.062125	S	5		5	5%	9%						
	Fine	.12525	A	4		4	4%	13%						
	Medium	.2550	N	7		7	7%	20%						
	Coarse	.50 - 1.0	D	1		1	1%	21%						
.0408	Very Coarse	1.0 - 2.0	S	6		6	6%	27%						
.0816	Very Fine	2.0 - 4.0		1		1	1%	28%						
.1622	Fine	4.0 - 5.7	G	2		2	2%	30%						
.2231	Fine	5.7 - 8.0	R	7		7	7%	37%						
.3144	Medium	8.0 - 11.3	A	4		4	4%	41%						
.4463	Medium	11.3 - 16.0	V	8		8	8%	49%						
.6389	Coarse	16.0 - 22.6	:::::E:::::	11		11	11%	59%						
.89 - 1.26	Coarse	22.6 - 32.0	L	11		11	11%	70%						
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	17		17	17%	87%						
1.77 - 2.5	Very Coarse	45.0 - 64.0		7		7	7%	94%						
2.5 - 3.5	Small	64 - 90	C	5		5	5%	99%						
3.5 - 5.0	Small	90 - 128	0	1		1	1%	100%						
5.0 - 7.1	Large	128 - 180	::::B:::::	0		0	0%	100%						
7.1 - 10.1	Large	180 - 256	L	0		0	0%	100%						
10.1 - 14.3	Small	256 - 362	В	0		0	0%	100%						
14.3 - 20	Small	362 - 512	L	0		0	0%	100%						
20 - 40	Medium	512 - 1024	D	0		0	0%	100%						
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0		0	0%	100%						
	Bedrock		BDRK	0		0	0%	100%						
			Totals	101	0	101	100%	100%						

I	d16	d35	d50	d84	d95
	0.4	7.5	16.8	42.6	68.9

Table 10a. Ba McCain Stream Restoration										line Stream Data Summary Site/Project No. 443 - Reach: 1 (286 feet)															
Parameter	Gauge ²	Reg	jional C	urve		Pre-	Existin	g Cond	ition			Refer	ence R	each(es	a) Data			Design	l		Мо	nitorin	g Base	line	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft))				14.6	18.7	25.9	29.3		4	10.4			27.1				18		1	16.9				
Floodprone Width (ft))				34	95	125	125		3	150			200							35				
Bankfull Mean Depth (ft))			1	1.1	1.4	1.4	1.7		4	0.8			1.5				1.4			1.1				
¹ Bankfull Max Depth (ft))				1.7	2.7	2.8	3.5		4	1.4			2				2			1.5				
Bankfull Cross Sectional Area (ft ²))				21.3	25.6	25.9	29.3		4	12.5			22.3				24.6			18.6				
Width/Depth Ratio)				8.3	14	15	17.6		4	11.6			18.5				13.2			15.4				
Entrenchment Ratio					1.8	5.6	6.4	8.5		3	7.4			14.4							2.1				
¹ Bank Height Ratio	þ				1	1.2	1.1	1.7		4	1			1				1			1				
Profile	-				-						-						-			-					
Riffle Length (ft))				1						9			108			1	58		54	63	63	72	12	2
Riffle Slope (ft/ft))		1								0.01			0.076			1	0.007		0.005	0.006	0.006	0.007	0.002	2
Pool Length (ft))				1						28			108				38		16	21	22	25	4	3
Pool Max depth (ft))				1						1.8			3.1				3							
Pool Spacing (ft))										38			181				95		107	113	113	119	8	2
Pattern																									
Channel Beltwidth (ft))		1	I	I	I	1		1		75	1	1	135	I	1	Î	Ι	1	I	78		1	Ι	
Radius of Curvature (ft))										14.5			26.8			30		35	35	38	38	40		2
Rc:Bankfull width (ft/ft))				1						1			1.6			1.7		1.9	2.1	2.2	2.2	2.4		
Meander Wavelength (ft))				1						70			148				190			204				1
Meander Width Ratio											3.6			13							4.6				
Transport parameters																									
Reach Shear Stress (competency) lb/f2	2																								
Max part size (mm) mobilized at bankful	I																								
Stream Power (transport capacity) W/m ²	2																								
Additional Reach Parameters																									
Rosgen Classification	1						B4c/E	4/C4-5					B4c/0	C3/C4				B4c				В	4c		
Bankfull Velocity (fps))																	3.9							
Bankfull Discharge (cfs))																								
Valley length (ft))						21	55																	
Channel Thalweg length (ft))						24	75										285				2	86		
Sinuosity (ft))						1.	15					1.50	-1.70				1.17				1	.3		
Water Surface Slope (Channel) (ft/ft))										0.0070	-0.0120				0.0067				0.0	068				
BF slope (ft/ft))								0.0070	-0.0120				0.0067				0.0	065						
³ Bankfull Floodplain Area (acres))																								
⁴ % of Reach with Eroding Banks																					_				
Channel Stability or Habitat Metric																									
Biological or Other	r																								

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10a. Baseli McCain Stream Restoration Sit										e Stream Data Summary //Project No. 443 - Reach: 2 (2184 feet)															
Parameter	Gauge ²	Reg	gional C	urve		Pre-	Existin	g Cond	ition			Refer	ence R	each(es) Data			Design	I		Мс	onitorin	g Base	line	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft))				14.6	18.7	25.9	29.3		4	10.4			27.1			18	20	24	20.6	22.8	23.3	24.6	0.9	3
Floodprone Width (ft))				34	95	125	125		3	150			200						47	54	51	63	6.2	3
Bankfull Mean Depth (ft))		1	1	1.1	1.4	1.4	1.7		4	0.8			1.5			1	1.3	1.4	1.3	1.4	1.4	1.5	0.1	3
¹ Bankfull Max Depth (ft))				1.7	2.7	2.8	3.5		4	1.4			2			1.3	1.7	2	1.8	1.9	1.8	2.1	0.2	3
Bankfull Cross Sectional Area (ft ²))				21.3	25.6	25.9	29.3		4	12.5			22.3			25	25.5	26	30.8	31.89	31.2	33.7	1.3	3
Width/Depth Ratio	D				8.3	14	15	17.6		4	11.6			18.5			12.7	15.6	23	13.8	16.4	17.4	18	0.8	3
Entrenchment Ratio	D				1.8	5.6	6.4	8.5		3	7.4			14.4						2	2.3	2.5	2.5	0.1	3
¹ Bank Height Ratio	b				1	1.2	1.1	1.7		4	1			1				1		1	1	1	1	0	3
Profile	-				-						-						-			-					
Riffle Length (ft))				1						9			108			59	67	88	20	68	76	97	23	13
Riffle Slope (ft/ft))		1								0.01			0.076			0.008	0.008	0.01	0.003	0.009	0.008	0.019	0.004	13
Pool Length (ft))				1						28			108			47	52	59	12	22	23	33	6	13
Pool Max depth (ft))				1						1.8			3.1			2.3	2.8	3.3	2.2	2.5		2.8		2
Pool Spacing (ft))										38			181			106	118	147	56	117	123	150	25	12
Pattern																									
Channel Beltwidth (ft))		1	I	I	I	1		1		75	1	1	135	1	I	Γ	Ι	1	20	66	62	97	24	10
Radius of Curvature (ft))				1						14.5			26.8			35		60	35	49	43	80	14	12
Rc:Bankfull width (ft/ft))				1						1			1.6			1.8		3.1	1.5	2.2	2.2	3.3		
Meander Wavelength (ft))				1						70			148			212	236	294	158	221	229	261	36	10
Meander Width Ratio											3.6			13						1.9	3.1	2.7	4.8		
Transport parameters																									
Reach Shear Stress (competency) lb/f	2																								
Max part size (mm) mobilized at bankful	I																								
Stream Power (transport capacity) W/m2	2																								
Additional Reach Parameters																									
Rosgen Classification	1						B4c/E	4/C4-5					B4c/	C3/C4				B4c				В	4c		
Bankfull Velocity (fps))																	3.9							
Bankfull Discharge (cfs))																								
Valley length (ft))						21	55																	
Channel Thalweg length (ft))						24	75										285				2	86		
Sinuosity (ft))						1.	15					1.50	-1.70				1.17				1	.3		
Water Surface Slope (Channel) (ft/ft))										0.0070	-0.0120				0.0067				0.0	068				
BF slope (ft/ft))									0.0070	-0.0120				0.0067				0.0	065					
³ Bankfull Floodplain Area (acres))																								
⁴ % of Reach with Eroding Banks	6																								
Channel Stability or Habitat Metric																									
Biological or Other	r																								

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) McCain Stream Restoration Site/Project No. 443 - Entire Stream (2470 lf)

Parameter	Pre	e-Exis	ting C	Condit	tion		Refe	erence	Reac	h(es)	Data		C	Desigr	ı			As-bu	ilt/Ba	seline	
¹ Ri% / Ru% / P% / G% / S%												56%	40%								
¹ SC% / Sa% / G% / C% / B% / Be%																					
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)																					
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																					
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																					

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section surveys and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide

a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 11a. Monitor	ing D	ata -	Dime	nsion	al Mo	rpho	logy S	Sumn	nary (Dime	nsion	al Pai	ramet	ers –	Cros	s Sec	tions	;)			
			McC	ain S	tream	n Rest	torati	on Si	te/Pro	oject I	No. 44	13									
		Cross	Sectio	on 1 (Re	each 1-	Riffle)			Cross	Sectio	on 2 (Re	each 2-	Riffle)			Cross	Section	on 3 (R	each 2	-Pool)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used	544.4	544.3	544.4					541	540.9	541					535.6	535.5	535.6				
Bankfull Width (ft)	16.9	17.2	18.11					24.6	25.2	27.87					22.6	23	22.25				
Floodprone Width (ft)	35	37	35					63	>75	63					-	-	-				
Bankfull Mean Depth (ft)	1.1	1.2	1.033					1.4	1.7	1.584					1.5	1.5	1.384				
Bankfull Max Depth (ft)	1.5	1.6	1.6					18	2.5	2.55					2.2	2.2	2.36				
Bankfull Cross Sectional Area (ft ²)	18.6	20.8	18.71					33.7	42.7	44.14					33.6	34.1	30.8				
Bankfull Width/Depth Ratio	15.4	14.2	17.52					18	14.9	17.59					-	-	-				
Bankfull Entrenchment Ratio	2.1	2.2	1.933					2.5	>3.0	2.261					-	-	-				
Bankfull Bank Height Ratio	1	1	1.1					1	1	0.969					-	-	-				
Cross Sectional Area between end pins (ft ²)	174.2	182	184.8					119	137	137.4					97	87	90				
d50 (mm)	21	18	13.5					19	17	24.2					8.1	1.7	31				
		Cross	Sectio	on 4 (Re	each 2-	Riffle)			Cross	Section	on 5 (R	each 2-	Pool)			Cross	Sectio	on 6 (Re	each 2-	Riffle)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used	534.5	534.4	534.5					531.3	531.2	531.3					531.3	531	531.3				
Bankfull Width (ft)	23.3	23.4	23.99					18.1	14.3	16.46					20.6	18.4	20.79				
Floodprone Width (ft)	47	52	47					-	-	-					51	50.5	51				
Bankfull Mean Depth (ft)	1.3	1.3	1.234					1.2	1.2	1.282					1.5	1.4	1.339				
Bankfull Max Depth (ft)	1.8	2	1.99					2.8	2.5	2.88					2.1	2	2.18				
Bankfull Cross Sectional Area (ft ²)	31.2	29.7	29.61					22.2	17.8	21.1					30.8	25.2	27.84				
Bankfull Width/Depth Ratio	17.4	18.4	19.44					-	-	-					13.8	13.4	15.52				
Bankfull Entrenchment Ratio	2	2.2	1.959					-	-	-					2.5	2.7	2.453				
Bankfull Bank Height Ratio	1	1	1.095					-	-	-					1	1	1.069				
Cross Sectional Area between end pins (ft ²)	103	120	132.3					146	148	158.3					133	159	157.1				
d50 (mm)	17	14	24					0.6	3	9.3					11	4.6	16.8				

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

Parameter			Bas	seline					Ν	IY-1					М	Y-2					M	Y- 3					M	Y- 4					M	(- 5		
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Mir	Mear	n Med	Max	SD4	n	Min	Mean	Med	Max	x SD ⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n
Bankfull Width (ft))	16.9						17.2						17.03																						
Floodprone Width (ft))	35						37						35																						
Bankfull Mean Depth (ft))	1.1						1.2						0.92																						
¹ Bankfull Max Depth (ft))	1.5						1.6						1.42																						
Bankfull Cross Sectional Area (ft ²)		18.6						20.8						15.67																						
Width/Depth Ratio)	15.4						14.2						18.5																						
Entrenchment Ratio)	2.1						2.2						2.056																						
¹ Bank Height Ratio		1						1						1.239																						
Profile																																				
Riffle Length (ft)	54.0	63.0	63.0	72.0	12.0	2	1	67.0					50.46	54.87	54.87	59.2	6.23	2																		
Riffle Slope (ft/ft)	0.00	5 0.006	0.006	6 0.007	0.00	2 2		0.00	7				0.002	0.005	0.005	0.00	0.005	2																		
Pool Length (ft)	16.0	21.0	22.0	25.0	4.0	3	25.	0	30.0	31.0	1		93.02	96.96	96.96	100.	.9 5.57	2																		
Pool Max depth (ft))												3.72	4.82	4.82	5.9	1 1.55	2																		
Pool Spacing (ft)	107.0	0 113.0	113.0) 119.0	8.0	2	112	0	125.	0 194.0	כ			127.1				1																		
Pattern																																				
Channel Beltwidth (ft))	78																																		
Radius of Curvature (ft)	35	38	38	40		2										Γ.																				
Rc:Bankfull width (ft/ft)	2.1	2.2	2.2	2.4												1 "	'attern da	ta will r	ot typica	indicat	ollected e sianifi	unless v cant shif	risual da ts from	ta, dime baseline	ensional	data or	profile o	data								
Meander Wavelength (ft))	204																																		
Meander Width Ratio)	4.6																																		
Additional Reach Parameters																																				
Rosgen Classification	1		E	34c						C4					В	34c																				
Channel Thalweg length (ft))		2	286						286					2	286																				
Sinuosity (ft)				1.3						1.3					1	1.3																				
Water Surface Slope (Channel) (ft/ft))		0.	0068					()65					0.0	0074																				
BF slope (ft/ft))		0.	0065											0.0	0039																				
³ Ri% / Ru% / P% / G% / S%	2												38%	10%	47%	10%	6																			
³ SC% / Sa% / G% / C% / B% / Be%													4%	19%	65%	119	6 0%	1%																		
³ d16 / d35 / d50 / d84 / d95 /													0.2	14.2	21.1	58.2	2 90																			
² % of Reach with Eroding Banks										1%					2	1%																				
Channel Stability or Habitat Metric																																				
Biological or Other																																				

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table

Parameter			Bas	seline					М	Y-1					Ν	IY-2						M	/- 3					M	Y- 4					М	Y- 5		
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Min	Mear	Med	I Ma	ax SD) ⁴ r	۱	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mear	Med	Max	SD ⁴	n
Bankfull Width (ft)	20.6	22.8	23.3	24.6	0.9	3	18.4	22.33	23.4	25.2	3.523	3	20.79	23.08	3 23.9	9 24.4	44 1.9	92 3	3																		-
Floodprone Width (ft)	47	54	51	63	6.2	3	51	55.33	52	63	6.658	3	47	53.67	51	63	3 8.3	27 3	3																	1	1
Bankfull Mean Depth (ft)	1.3	1.4	1.4	1.5	0.1	3	1.3	1.467	1.4	1.7	0.208	3	1.281	1.425	5 1.33	9 1.6	55 0.2	01 3	3																	1	1
¹ Bankfull Max Depth (ft)	1.8	1.9	1.8	2.1	0.2	3	2	2.167	2	2.5	0.289	3	2.06	2.197	2.18	2.3	35 0.1	46 3	3																		
Bankfull Cross Sectional Area (ft ²)	30.8	31.89	31.2	33.7	1.3	3	25.2	32.53	29.7	42.7	9.088	3	27.84	32.95	5 31.3	39.	71 6.1	02 3	3																		
Width/Depth Ratio	13.8	16.4	17.4	18	0.8	3	13.4	15.57	14.9	18.4	2.566	3	14.5	16.37	15.5	2 19.	09 2.4	1 3	3																		
Entrenchment Ratio	2	2.3	2.5	2.5	0.1	3	2.2	2.467	2.5	2.7	0.252	3	1.923	2.334	2.45	3 2.6	26 0.3	66 3	3																	T	
¹ Bank Height Ratio	1	1	1	1	0	3	1	1	1	1	0	3	1.051	1.059	1.05	B 1.0	69 0.0	09 3	3																	T	
Profile	-																																				
Riffle Length (ft)	20.0	68.0	76.0	97.0	23.0	13	16.0		37.6	86.8			13.0	65.8	69.2	112	2.0 29	3 1	7																	1	
Riffle Slope (ft/ft)	0.003	0.009	0.008	0.019	0.004	13	0.00	1	0.012	0.027			0.002	0.011	0.00	7 0.0	59 0.0	13 1	7																	1	1
Pool Length (ft)	12.0	22.0	23.0	33.0	6.0	13	12.0		29.2	44.3			29.4	57.0	50.1	160	0.4 30	6 1	9																		
Pool Max depth (ft)	2.2	2.5		2.8		2							1.8	3.1	2.8	5.9	9 0.	9 1	9																	1	1
Pool Spacing (ft)	56.0	117.0	123.0	150.0	25.0	12	52.0		144.0	317.0			76.9	121.5	5 116.	5 183	3.7 30	7 1	8																		
Pattern	-																																				
Channel Beltwidth (ft)	20	66	62	97	24	10																															
Radius of Curvature (ft)	35	49	43	80	14	12											.																				
Rc:Bankfull width (ft/ft)	1.5	2.2	2.2	3.3													Pattern	data wil	I not	typicall	ly be co indicate	e signific	unless v ant shif	risual da	ta, dime baseline	ensional	data or	profile	data								
Meander Wavelength (ft)	158	221	229	261	36	10																															
Meander Width Ratio	1.9	3.1	2.7	4.8																																	
Additional Reach Parameters																																					
Rosgen Classification				C4					(24						C4																					
Channel Thalweg length (ft)			2	182					2	82					2	2182																					
Sinuosity (ft)			1	.18					1	.18						1.18																					
Water Surface Slope (Channel) (ft/ft)			0.	0068					0.0	067					0.	0066																					
BF slope (ft/ft)			0.	0065					0.0	067					0.	0068																					
³ Ri% / Ru% / P% / G% / S%	2												54%	2%	32%	16	%																				
³ SC% / Sa% / G% / C% / B% / Be%	×												11%	10%	71%	5 79	% 0%	6 19	%																		
³ d16 / d35 / d50 / d84 / d95 /													1.6	6.22	14.0	6 41.3	34 97.	76																			
² % of Reach with Eroding Banks				•		•			Ċ	1%				•	•	1%							•	•			•		•					•			
Channel Stability or Habitat Metric																																					
Biological or Other																																					

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table

Appendix E. Hydrologic Data

Tuble 12. Verifieddior														
CI	Table 12. Verification	tion of Bankfull Events												
Chapel Creek Stream Restoration-Project No. 77														
Date of Data Collection	Date of Occurrence	Method	Photo #											
November 17, 2009	November 13, 2009	Site visit to evaluate indicators of stage after storm events	N/A											
September 30, 2010	September 30, 2010	NWS COOP Station and site visit for confirmation	Photo 14											

Table 12. Verification of Bankfull Events

A stream crest gauge was installed on the site on November 1, 2010. The data for the rainfall event was collected from NWS Cooperative Observer Station Asheboro 2 W (310286) located in Asheboro, NC. The daily observed precipitation on September 30, 2010 shows rainfall of 3.81 inches over a 24 hour period which is greater than the bankfull storm event for the project location. Photo 14 shows the wrack line on the bank providing evidence of the bankfull event on the project site.

Photo 14. Wrack line

McCain Stream Restoration NCEEP Project number: 443 Ward Consulting Engineers, P.C.

)			
Observed	Normal	Record/Year	Prev Year
76	76	90 in 1954	71
63	56	38 in 1967+	50
69.5	66	80.0 in 1954+	60.5
3.81	0.13	3.81 in 2010	0.00
_	_	0.0 in 2009+	0.0
_	_	0 in 2009+	0
0	2	13 in 1967+	4
5	3	15 in 1954+	0
Observed	Normal	Record/Year	Prev Year
85.4	79.6	88.2 in 1933	78.3
63.3	61.1	54.9 in 1967	60.3
74.4	70.4	76.5 in 1933	69.3
6.63	4.22	14.16 in 1928	3.69
_	_	0.0 in 2009	0.0
_	_	0 in 2009	0
3	15	68 in 1928	14
293	175	355 in 1931	150
) Observed 76 63 69.5 3.81 - - 0 5 Observed 85.4 63.3 74.4 6.63 - 3 293) Observed Normal 76 76 63 56 69.5 66 3.81 0.13 0 2 5 3 Observed Normal 85.4 79.6 63.3 61.1 74.4 70.4 6.63 4.22 3 15 293 175) Observed Normal Record/Year 76 76 90 in 1954 63 56 38 in 1967+ 69.5 66 80.0 in 1954+ 3.81 0.13 3.81 in 2010 0.0 in 2009+ - 0 10 2009+ 0 2 13 in 1967+ 5 3 15 in 1954+ Observed Normal Record/Year 85.4 79.6 88.2 in 1933 63.3 61.1 54.9 in 1967 74.4 70.4 76.5 in 1933 6.63 4.22 14.16 in 1928 0.0 in 2009 0 in 2009 3 15 68 in 1928 293 175 355 in 1931

+ indicates record also occurred in previous years (last occurrence listed).

Official data and data for additional locations and years are available from the Regional Climate Centers and the National Climatic Data Center.

					Pı	recipi	tatio	n Fre	quen	cy Es	timate	es (inc	hes)					
ARI* (years)	<u>5</u> <u>min</u>	<u>10</u> <u>min</u>	<u>15</u> <u>min</u>	<u>30</u> <u>min</u>	<u>60</u> <u>min</u>	<u>120</u> <u>min</u>	<u>3 hr</u>	<u>6 hr</u>	<u>12</u> <u>hr</u>	<u>24 hr</u>	<u>48 hr</u>	<u>4 day</u>	<u>7 day</u>	<u>10</u> <u>day</u>	<u>20</u> <u>day</u>	<u>30</u> <u>day</u>	<u>45</u> <u>day</u>	<u>60</u> <u>day</u>
1	0.40	0.64	0.80	1.10	1.37	1.61	1.72	2.09	2.48	2.89	3.38	3.80	4.35	4.95	6.67	8.24	10.41	12.46
2	0.48	0.76	0.96	1.32	1.66	1.96	2.09	2.52	2.99	3.49	4.07	4.56	5.19	5.89	7.86	9.69	12.18	14.53
5	0.55	0.89	1.12	1.59	2.04	2.43	2.60	3.14	3.74	4.37	5.05	5.61	6.31	7.08	9.28	11.26	13.94	16.40
10	0.60	0.97	1.22	1.77	2.31	2.77	2.98	3.61	4.34	5.05	5.80	6.43	7.19	8.00	10.41	12.47	15.29	17.84
25	0.66	1.06	1.34	1.98	2.64	3.20	3.47	4.24	5.14	5.97	6.82	7.55	8.39	9.25	11.94	14.07	17.07	19.69
50	0.70	1.11	1.41	2.12	2.88	3.53	3.85	4.72	5.79	6.71	7.61	8.43	9.35	10.23	13.14	15.31	18.42	21.09
100	0.73	1.16	1.47	2.25	3.10	3.84	4.21	5.22	6.45	7.45	8.43	9.34	10.32	11.22	14.36	16.53	19.74	22.43
200	0.76	1.20	1.51	2.36	3.31	4.15	4.58	5.71	7.14	8.22	9.26	10.26	11.32	12.23	15.59	17.76	21.05	23.73
500	0.78	1.24	1.56	2.48	3.56	4.54	5.06	6.38	8.09	9.27	10.39	11.53	12.69	13.60	17.27	19.39	22.77	25.42
1000	0.80	1.26	1.58	2.56	3.74	4.83	5.42	6.90	8.85	10.10	11.28	12.52	13.77	14.67	18.58	20.65	24.08	26.69

* These precipitation frequency estimates are based on a <u>partial duration series</u>. **ARI** is the Average Recurrence Interval. Please refer to <u>NOAA Atlas 14 Document</u> for more information. NOTE: Formatting forces estimates near zero to appear as zero.